jump to navigation

Liam Mc Allister: Inflation in String Theory May 23, 2008

Posted by dorigo in cosmology, news, physics.
Tags: , ,
trackback

Here we go with another report from PPC 2008. This one is on the talk by Liam Mc Allister from yesterday afternoon session. In this case, I feel obliged to warn that my utter ignorance of the subject discussed makes it quite probable that my notes contain nonsensical statements. I apologize in advance, and hope that what I manage to put together is still of any use to you, dear reader.

The main idea discussed in Liam’s talk is the following: if we detect primordial tensor perturbations in the cosmic microwave background (CMB) we will know that the inflaton -the scalar particle responsible for the inflation epoch- moved more than a Planck distance in field space. Understanding such a system requires confronting true quantum gravity questions. String theory provides a tool to study this.

Inflation predicts scalar fluctuations in the CMB temperature. These evolve to create approximately scale-invariant fluctuations, which are also approximately gaussian. The goal we set to ourselves is to use cosmological observations to probe physics at the highest energy scales.

The scalar field \phi has a potential which drives acceleration. Acceleration is prolonged if V(\phi) is rather flat. How reasonable is that picture ? This is not a macroscopic model. What is \phi ? The simplest inflation models often invoke smooth potentials over field ranges larger than the Planck mass. In an effective field theory with a cutoff \Lambda one writes the potential with powers of the ratio \phi/\Lambda. Flatness is then imposed over distances \Delta \phi > \Lambda. But \Lambda must be smaller than the Planck mass, except in a theory of quantum gravity.

So one needs to assume something about quantum gravity to write a potential. It is too easy to write an inflation model, so it is not constrained enough to be predictive. We need to move to some more constrained scenario.

Allowing an arbitrary metric on the kinetic term, and an arbitrary number of fields in the lagrangian, the potential is very model-dependent. The kinetic term has higher derivative terms. One can write the kinetic term of the scalar fields with a metric tensor G. G is the metric on some manifold, and can well depend on the field themselves. An important notion is that of the field range.

Liam noted that the prospects for excitement in theory and experiments are coupled. If the parameter n_s is smaller than 1, there are no tensors and no non-gaussianity, and in that case we may never get more clues about the inflaton sector than we have right now. We will have to be lucky, but the good thing is that if we are, we are both ways. Observationally non-minimal scenarios are often theoretically non-minimal: detectable tensors require a large field range, and this requires a high-energy input. If anything goes well it will do so both experimentally and theoretically.

String theory lives in 10 dimensions. To connect to 4D reality string theory, we compactify the 6 additional dimensions. Additional dimensions are small otherwise we would not see a newtonian law of gravity, since gravity would propagate too much away from our brane.

Moduli correspond to massless scalar fields in 4-dimensions. Size and shape moduli for the Calabi-Yau manifold. Light scalars with gravitational strength couplings absorb energy during inflation. They can spoil
the pattern of big bang nucleosynthesis (BBN) and overclose the universe. The solution is therefore that sufficiently massive fields decay before BBN, so they are harmless for it (however, if they decay to gravitinos they may still be harmful).

The main technical extension: D-branes, by Polchinski in 1995. If you take a D-brane and you wrap it in the compact space, it takes energy that creates a potential for the moduli. It makes the space rigid.
The tension of D-branes makes distorting the space cost energy. This creates a potential for the moduli.

Any light scalars that do not couple to the SM are called moduli. Warped D-brane inflation: it implies warped throats. A CAlabi-Yau space is distorted to make a throat. This is a Randall-Sundrum region. It is the way by which string theory realizes it. A D-3 brane and an anti-D3 brane attract each other.

The tensor-to-scalar ratio is large only if the field is moving over planckian distances, \Delta \phi/M_p. That is the diameter of the field space. It is ultraviolet-sensitive but not too much so.
In our framework, observable tensors in CMB mean that there has been trans-planckian field variation.

Can we compute the (\Delta \phi /M_p)_{max} in a model of string inflation ? Liam says we can.
Planckian distances can be computed in string theory using the geometry. The field \phi is the position in the throat, so \Delta \phi is the length of the throat. It is reduced to a problem in geometry. The field range is computed to (\Delta \phi/M_p)^2 < 4/N, where N is the number of colors in Yang-mills theory associated to the throat region. N is at least a few hundred!
So the parameter r_{CMB} is small with respect to the threshold for detection in the next decade, since r_{CMB}/0.009 < 4/N.

N has to be large for us to be using supergravity. You can conceive a configuration with N not large,
but then we cannot compute it. It is not in the regime of honest physics, in that case. There are boundaries
in the space of string parameters. So we are constraining ourselves in a region where we can make computations. It would be very interesting to find a string theory that gives a large value of r.

Liam’s conclusions were that inflation in string theory is developing rapidly and believable predictions are starting to become available. In D-brane inflation, the computation of field range in Planck units shows that detectable tensors are virtually impossible.

Comments

1. Amara - May 23, 2008

Dear Tommaso- I’m just getting caught up on all your PPC 2008 posts this week. Wow! Great summaries of the highlights. It looks like you never slept. Maybe this was your strategy to stay fixed to Italian time..😉 Thanks for all of your hard work.

2. dorigo - May 24, 2008

Thank you Amara. I did sleep, but not during the talks😉

Cheers,
T.

3. Paul Neilson - May 24, 2008

Tommaso

I think you have invented a new form of Journalism in the last few days. Real reporting by someone who actually understands the subject! It’s simply fantastic.

But, you can’t give up your day job. If you did, you would quickly loose the deep understanding that is making this reporting so great.

Please, keep up this excellent work. It lets an outsider like myself stay close to a subject I love, while I toil at my day job that allows little time for Physics.

Thanks,
Paul

4. dorigo - May 24, 2008

Hi Paul,

don’t be so sure I understand much of what I report… In fact, these notes are a placeholder to remind myself I need to study some topic more. Anyway, I am glad you enjoy reading them.

Best,
T.

5. Alejandro Rivero - May 24, 2008

The question is, why there is not more people doing the same reporting? It has been tried two times in an institutional basis: the quantum diaries, and now the LHC diaries… and only Dorigo survives.

6. dorigo - May 26, 2008

Yep Alejandro, and I plan to do so for a while more😉

Cheers,
T.


Sorry comments are closed for this entry

%d bloggers like this: